Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Psychol Gen ; 153(5): 1374-1387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38647481

RESUMO

A subcortical pathway is thought to have evolved to facilitate fear information transmission, but direct evidence for its existence in humans is lacking. In recent years, rapid, preattentive, and preconscious fear processing has been demonstrated, providing indirect support for the existence of the subcortical pathway by challenging the necessity of canonical cortical pathways in fear processing. However, direct support also requires evidence for the involvement of subcortical regions in fear processing. To address this issue, here we investigate whether fear processing reflects the characteristics of the subcortical structures in the hypothesized subcortical pathway. Using a monocular/dichoptic paradigm, Experiment 1 demonstrated a same-eye advantage for fearful but not neutral face processing, suggesting that fear processing relied on monocular neurons existing mainly in the subcortex. Experiments 2 and 3 further showed insensitivity to short-wavelength stimuli and a nasal-temporal hemifield asymmetry in fear processing, both of which were functional characteristics of the superior colliculus, a key hub of the subcortical pathway. Furthermore, all three experiments revealed a low spatial frequency selectivity of fear processing, consistent with magnocellular input via subcortical neurons. These results suggest a selective involvement of subcortical structures in fear processing, which, together with the indirect evidence for automatic fear processing, provides a more complete picture of the existence of a subcortical pathway for fear processing in humans. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
ACS Appl Mater Interfaces ; 10(43): 37233-37241, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30299935

RESUMO

Flexible fiber-shaped supercapacitors hold promising potential in the area of portable and wearable electronics. Unfortunately, their general application is hindered by the restricted energy densities due to low operating voltage and small specific surface area. Herein, an all-solid-state fiber-shaped asymmetric supercapacitor (FASC) possessing ultrahigh energy density is reported, in which the positive electrode was designed as Na-doped MnO2 nanosheets on carbon nanotube fibers (CNTFs) and the negative electrode as MoS2 nanosheet-coated CNTFs. Owing to the excellent properties of the designed electrodes, our FASCs exhibit a large operating potential window (0-2.2 V), a remarkable specific capacitance (265.4 mF/cm2), as well as an ultrahigh energy density (178.4 µWh/cm2). Moreover, the devices are of outstanding mechanical flexibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...